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Extended irreversible thermodynamics (EIT) has been used mainly to study the 
short-time behavior of fluids and some other systems. It has also been shown 
how the structure of the equations of motion constructed for the so-called 
relaxation variables coincides with those obtained by means of Grad's method 
in kinetic theory. In this work we calculate the generalized entropy from the 
one-particle distribution function up to 26 moments. We find that the charac- 
teristics of such entropy and the equations of motion for the relaxing variables 
are supported by the kinetic theory. This is not the case for the hierarchical 
relaxation hypothesis which is used in the applications of EIT to the generalized 
hydrodynamic regime. 

KEY WORDS: Grad's method; extended irreversible thermodynamics; entropy 
balance. 

1. I N T R O D U C T I O N  

The main purpose of this paper is to examine critically the physical content 
of the basic assumptions behind extended irreversible thermodynamics 
(EIT) (1~) in the light of results obtained through the one-particle distri- 
bution function for a dilute monatomic gas using Grad's moments 
method.(5 7) The basic difference between these results and the conventional 
ones is that 26 moments were used in the calculation instead of the 13 
moments used in the latter. This means that not only were the heat and 
momentum fluxes raised to the status of independent variables, but so were 
also additional variables whose physical meaning will be discussed later. 
The choice of this number of moments was motivated by the fact that it 
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is the lowest approximation which yields frequency- and wavenumber- 
dependent transport coefficients. (8) The merit of this calculation is that all 
quantities which appear as undetermined phenomenological coefficients in 
the macroscopic formulation of EIT are here expressed in terms of collision 
integrals which may be explicitly evaluated for some intermolecular poten- 
tials, thus allowing for a quantitative analysis of many of the so far hidden 
features of macroscopic EIT. (1~) Moreover, a more realistic analysis about 
the physical meaning of the so-called "generalized entropy function" as well 
as its related entropy production can be readily performed, thus clarifying 
some of their so far conjectured properties. The orders of magnitude of the 
relaxation times associated to the nonconserved or fast variables often 
assumed to obey some kind of hierarchical order can be explicitly 
calculated showing clearly how this hypothesis seems to be untenable. (9'11) 

Finally, some insight is obtained regarding the balance equation for 
the generalized entropy, namely 

DS 
p ~--i-+Voj,= 45, (1.1) 

In order to keep such an equation in some way consistent with the 
Clausius-Duhem inequality, provided of course that the generalized 
entropy S and its flux J ,  have a well-defined physical meaning, 45s is 
assumed to be nonnegative by many practitioners of EIT. (1) This assump- 
tion, as essential or not to the EIT development, has raised many questions 
about both the full significance of the entropy balance equation and the 
identification of 45 as an entropy production term. Here some rather 
concrete results are obtained which support the usual interpretation of 
Eq. (1.1) as is done in linear irreversible thermodynamics (13) regardless of 
whether this assumption is taken to hold or not in EIT. Since there are a 
number of recent papers concerning the basic ideas behind EIT, (1-4) we 
shall not go into this matter here. 

The structure of the paper is as follows. In Section 2 we give the basic 
results obtained for the distribution function for a dilute monatomic gas 
using Grad's moment method and extending it to include up to 26 
moments. Such results include the explicit calculation of the time rate of 
change of the so-called nonconserved variables, the generalized entropy, 
entropy flux, and entropy source as defined in kinetic theory. We also 
compute the relaxation times associated to such fluxes. Finally in Section 3 
we discuss the significance of these results under the framework of EIT and 
analyze the ensuing conclusions. 
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2. G R A D ' S  M O M E N T  M E T H O D  

The Boltzmann equation for a dilute monatomic gas as well as its 
solution using the 13-moment method devised by H. Grad 40 years ago are 
thoroughly discussed in the literature, (5'6) so that we shall not enter into 
any unnecessary details. The gist of the method lies in developing the 
single-particle distribution function describing the states of the gas in the 
six-dimensional phase space (/~) around a local Maxwellian distribution 
function. The first five moments of this distribution define the five locally 
conserved variables in such a way that the usual conservation equations 
are valid. Just for the sake of completeness we recall here the kinetic 
definitions for the macroscopic variables we will use as relevant to the 
description of the system. The mass density is given by p =nm, m being the 
mass of a molecule and 

n(x, t ) = I f ( c ,  x, t )de  (2.1) 

the numerical density, e denoting the molecular velocity. The 
hydrodynamic velocity is defined as 

1 (,  

v(x, t) = - | cf(c, x, t) de (2.2) 
/7 d 

and the internal energy 

ne(x,  t) = 3 n K T ( x ,  t) = f �89 x, t) dc  (2.3) 

K being the Boltzmann's constant, and C = e - v ( x ,  t) is the chaotic or 
random velocity. 

The ordinary fluxes appearing in the conservation equations now have 
a well-defined kinetic meaning, namely 

q = f X(mCZ - 5 K T )  Cf(c, x, t) dc (2.4) 

is the heat flux, and 

/~= f m(CC)~ f(c,  x, t) dc (2.5) 

is the traceless viscous tensor. Equations (2.1)-(2.5) provide the first 13 
moments for the distribution function. The additional variables required 
for our calculation are now defined as 

Sijk = SO.k 2 -- 5(qi6jk + qj6i~ + qk60-) (2.6) 
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is a symmetric traceless third-order tensor, where 

gijk = f mCiCjCkf(e' x, t) de (2.7) 

is the usual third-order moment of the distribution function. Also the 
contraction of the fourth moment will be taken as a relevant variable 

~j = f �89 2 -  5KT) CiCj f(e, x, t)de (2.8) 

In a qualitative way these tensors can be seen to correspond physically to 
the flux of the momentum flux /~ and the flux of the heat flux q, respec- 
tively. Equations (2.1)-(2.8) define the set of 26 independent moments 
which will be taken as the variables describing the states of the gas. Notice 
should be made that the variables we have chosen as relevant are not the 
only ones, In fact, we can construct different approximations to the 
distribution function according to the quantities we choose to be zero in 
Grad's expansion. Here we obtain the 13-moment approximation by taking 
s~k = 0 and ~j  = (KT/rn)Po. , whereas the 20-moment approximation is 
worked out with the assumption that 

"4" 2 /  m "~ 
a ! . ' = - I - - ~ . - - b  o.] = 0  •kt p \ KT ~ O 

The moment a (4) is the trace of the fourth-order moments in the multi- 
dimensional Hermite polynomials. The 26-moment approximation we will 
describe here in full detail is obtained when the traceless fourth-order 
moment qijkl of the distribution function is zero. 

The distribution function we will use can be straightforwardly written 
as 

( c c )  : - + c f ( c ' x ' t ) = f ~  1 + 2 ~  p 5 p K T \ 2 K T  

1 [m'~ 2 1 ( m ) 2 ( m C  2 
~-6p~-~) CiCjCk:Sijk ~-~p ~ \2KT 

x ( c c ) O : ( )  KT o\ m [mC2(mC 2 
--g-P)+30~L KT \ 2KT 

(mC 2 m 
- 3 \ 2 K T  ~)]J~+24pKTVO"w~i,*a~ 

oq 

;) 
;) 

(2.9) 
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As the next step of our calculation, we now wish to consider the computa- 
tion of the kinetic entropy function. Although this is straightforward as far 
as algebraic details are concerned, this calls for some precautions. We recall 
that by an appropriate mathematical transformation ~5'12 14) the Boltzmann 
equation may be rewritten in the same form as Eq. (1.1) if we identify the 
entropy density S as 

pS = - K  I f ( ln  f -  1 ) de (2.1o) 

the entropy flux J ,  as 

a s= - K f f ( l n f -  1) C de (2.11) 

and the entropy source q~ as 

cI) = - K f  ( l n f -  1) J ( f , f )  de (2.12) 

where J( f , f )  is the collision term. Equations (2.10)-(2.12) are devoid of 
any physical meaning whatsoever until we specify the explicit form for 
f(e,  x, t). Indeed, if we want to recover the usual balance equation for the 
entropy density for a closed system according to LIT, and identify 
Eq. (2.10) with the entropy, as used in this formalism, (13'28) something else 
will have to be said about f(e,  x, t), since direct substitution of a solution 
to Boltzmann's equation in Eq. (2.10) would yield a function depending on 
x and t but not of the state variables for the system as thermodynamics 
requires. Analogously, in Eq. (2.11) we must be able to prove that ds = q/T, 
where q is the heat flux, and in Eq. (2.12) that q~s be nonnegative. We 
remind the reader that all these requirements are accomplished when f is 
taken as the solution first order in the gradients to the Boltzmann equation 
by the Chapman-Enskog method. (12 ~4) If one uses the solution to the 
Boltzmann equation obtained with Grad's 13-moment, method the main 
assumptions of EIT are recovered, (1'7) but not enough information is 
available to carry out a deeper analysis of the relaxation times involved in 
the equations of motion. Also, the entropy balance equation needs a some- 
what careful analysis when we are in the short-wavelength and frequency 
regime. 

When Eq. (2.9) is substituted into Eqs. (2.10)-(2.12) the problem 
arises as to how to evaluate f ( ln  f - 1 ) .  Here, as in the cases mentioned 
above, one turns to an approximation, namely, to regard f as f(~ +X),  
where X can be identified in Eq. (2.9). Assuming that X is a number 
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small compared with one and using the series expansion in powers of X, 
we retain in the product only those terms which are at most bilinear in 
the relevant variables. Notice should be made that this approximation is 
the kinetic analog of the expansion around local equilibrium made by the 
Barcelona school to construct the entropy balance equation. ~ This 
procedure will have a strong effect on the final forms of both pS and J~, 
which in turn will be reflected in their comparison with the corresponding 
phenomenological coefficients. One obtains for the entropy that 

1 rn m 
pS=pSo-~pTPijfio 5pKT 2 qiqi 12pKTSSakSok 

1 (FF/~2 2 l (rn'~2(Jii_KTffc ~ 
60pTkKTJ Jrr 14p-T\K-T/ m ' /  

m 'JJ (2.13) 

where So is the local equilibrium entropy. Equation (2.13) shows an 
explicit dependence of the generalized entropy with the fluxes chosen as 
macrovariables for the system, thus implying that the gas is no longer in 
a local equilibrium state, as defined in LIT. (13"28) 

The generalized entropy flow turns out to be 

js=qi 2 ( m ) q j ~ j  5 
T 5pT ~ 14pTSOk Pjk 

1 m o 2 m 

The first term in Eq. (2.14) corresponds precisely to the form required 
by LIT, whereas the other terms arise from the fast or relaxing variables. 
The appearance of these terms is highly dependent on the 26-moment 
approximation, since in general the flux depends on higher-order momenta 
which are approximated by their expression consistent with the choice of 
the specific set of 26 variables. A virtue of both Eqs. (2.13) and (2.14) is 
that when the fluxes cease to perform as independent variables, both the 
generalized entropy S and the entropy flux J,  reduce to their respective 
forms as required by LIT. 

The calculation of the generalized entropy source term uses the same 
approximation in the computation of lnf, which has to be multiplied by 
the collision term J(f,f), which is bilinear in f Retaining only the 
quadratic terms in the fluxes, one obtains that 
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qSs - 20 T 2 qiqi -'}- ~ SijkSijk -I- n2K F3J,~ 

+ 2--oTb~bi: Flf'ij Jiij + 7 ( 1 5 ) K T  2 - ~  m 'JJ 

+ m ')i:"- m 49(15) KT 2 

where )-0, r/0, ).s, and the Fi (i = 1, 2, 3) are given in terms of the collision 
integrals f2 (r's), which depend on the intermolecular potential, ~12) whose 
explicit values are given in Table I. Notice should be taken that these 
integrals are also obtained through very specific measurements, so their 
values are known in a rather precise way. ~ 

Fquation (2.15) formally agrees with the LIT calculation, in the sense 
that it is a bilinear form in the fluxes. However, it is important to remark 
that we are not invoking the local equilibrium hypothesis and we do not 
have any evidence for a positive-definite entropy source. We also recall that 
the total entropy source is the integral of q~s over the entire volume of the 
system and the positiveness of this total entropy production is the property 
required by the second law of thermodynamics. 

The equations of motion corresponding to the nonconserved variables 
are now obtained by a straightforward substitution of Eqs. (2.13)-(2.15) 
into Eq. (1.1). In fact we have followed the same procedure as in EIT to 
construct the equations of motion for those variables, our main contri- 
bution being to provide the kinetic expression of all coefficients which 

Table  I. Relat ion B e t w e e n  the  Coef f ic ien ts  in 
Eq. (2.15) and the Usual Q(.,s) Integrals  

5 K T  
/70 = ~ ~-?(2,2) 

75 K 2 T  
J'o = 32 ms ~2'2~ 

9(35) KZT 
2s 16 m.Q (2,2) 

F 1 = - -~  (7,.(2 ~2'2)- 20(2,3)) 

/'3 = -~ ( ~ 2 7  ~2(2'2) -- 5~c~ (2' 3) --~ ~ (2'4)) 

822/69/1-2-15 
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otherwise remain unknown. For their explicit evaluation we have a 
molecular model to work with. 

Following the standard procedure, (1'2) the balance equation is factor- 
ized in the fluxes considered as independent, and equating the corresponding 
coefficients we obtain the following set of equations: 

Oq,_ 1 (qi+20V, 1 Vi~rr_Vj~iij (2.16) Ot "Eq T ) - ~  

for the heat flux and 

3si;g 2 5KT VP ~ 2 (VJ)~k (2.17) 
~t 7Zq Sijk - ~ ( )ijk - 

for the third-order tensor se]k, with (V/~) ~ and (Vfi') ~ being symmetric 
traceless third-order tensors. The trace Jrr obeys an equation given by 

nF3 O~lTrr Ot 4K--T ( V ~  -~ r  m (2.18) 

The equations for the viscous tensor and the second-order tensor 
associated with the flux of q are strongly coupled and are given by 

OP o. = _ 1 (po + 2t/o(Vu)~) 8nm 
Ot Zp 7(15) K T  

x F1 (~ii; _ __KTm Pi;) ~ (2.19) 

~3~j p / K T  4 \ 
Qt = _ m ~ _ ~ o + ~ F 1 ) ~ i ;  2pKTm ( V u ) ~ - - - ( F 2 + F 1 )  

8n 

7(15) 

/ o K T  o \ 18KT o 2KT 
x ~ ~ ; -  ---~ P o ) -- --~m (Vq)~j-- - -  (2.20) 

Equations (2.16)-(2.20), together with the conservation equations for 
the conserved variables, which we have not written here explicitly, are the 
set of equations that must be compared with their macroscopic analogs. 
We present the details of this discussion in the following section. 

3. D ISCUSSION OF THE RESULTS 

Since the structure of the conservation equations remains unaltered in 
all this treatment, we first concentrate on the time evolution equations for 
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the nonconserved quantities, the fluxes. Their phenomenological form, 
which follows from the premises of EIT, has been explicitly given else- 
where, (17) whereas their form as obtained from kinetic theory is given in 
Eqs. (2.16)-(2.20). A term-by-term comparison shows that both sets are 
identical and the undetermined coefficients appearing in the EIT calcula- 
tion may now be expressed in terms of local equilibrium variables and 
collision integrals. 

Furthermore, if in Eqs. (2.16)-(2.20) we neglect all the coupling terms 
among the fluxes, the resulting equations are of the Maxwell-Cattaneo 
type, which are relaxation-type equations. <1'=) Indeed, a relaxation time can 
be readily identified in each case and to guarantee the relaxing property of 
the variable such times must be proven to be positive. Table II shows the 
value of the relaxation times associated with each flux as well as their 
explicit form in terms of the conserved variables and an estimation of their 
order of magnitude using both a hard-sphere model and the experimental 
data reported in the literature. (16) The interesting outcome of this calcula- 
tion, never reported before, is that they all turn out to be of the same order 
of magnitude, clearly revealing the inexistence of a hierarchical relaxation 
of the fluxes. This result has a strong bearing on several calculations which 
have been performed in the past using the results of EIT. When applied to 
explain generalized hydrodynamics, (1~ a claim is made asserting that the 
fluxes J,.j and suk relax faster than q or/~. The results obtained here cast 
doubt of such an assertion, although here they have been obtained only for 
the case of dilute monatomic gases. A theory of generalized hydrodynamics 
based upon the results of a 26-moment approximation has been published 
elsewhere. (8) 

Let us give a more detailed discussion of the problem stated here. As 
we know, the Boltzmann equation gives a good description of the behavior 

Table II. Relationship Between the Relaxation Times and the f/(2.2) Vaiue for  
the Hard-Sphere Potential, Their Value for Low-Density Argon at 303.5 K, 

and the Experimental Value at the Same Temperature 

H a r d  spheres  (HS)  HS va lue  Exper imenta l  va lue  

3 15 
3.89 x 10 -1~ sec 3.42 x 10 l~ 

rq = ~ zp = 16ns 

7 
"gs~ ~ Tq 

135 2.58 x 10 xo sec 2.40 x 10 -1~ sec 
t o = ~j = 217ng2(2,2) 
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of a dilute monatomic gas. The Chapman-Enskog method to solve such an 
equation yields a perturbative solution around the local equilibrium state 
of the system. It is well known (12 15) that this method allows the calculation 
of the constitutive equations and the corresponding transport coefficients, 
not only for the Navier-Newton-Fourier  regime, but also for the Burnett 
regime, etc. These approximations are well characterized as expansions in 
the Knudsen number, which gives the relative magnitude between the 
terms in the distribution function. The consistency of this expansion with 
the local equilibrium assumption has also been established. (15) This means 
that the Chapman-Enskog method does not allow for the calculation of 
equations of motion for the fluxes, which are the additional variables in 
EIT. This is the reason one must use Grad's method to solve the 
Boltzmann equation, since it provides the proper framework to understand 
the kinetic basis of EIT. (7) We have seen in Section 2 that according to 
Grad's method, it is possible to choose the same relevant variables as in 
EIT and the equations of motion have the same structure, all of them being 
relaxation equations. A problem arises when we ask ourselves about the 
validity of the expansion procedure. In fact, Grad's method does not have 
an expansion parameter as provided by the Knudsen number in the 
Chapman-Enskog method. A truncation procedure is necessary to obtain 
a closed system of equations and this is done without a clear indication 
about the order of magnitude of the terms we neglect. This is a short- 
coming of the method which has been recently stressed by Van Kampen, (18) 
but does not interfere with our discussion. To overcome this difficulty, 
we can say that our interest is concentrated in a generalization of linear 
irreversible thermodynamics to situations in which the local equilibrium 
assumption is no longer valid, although we must certainly recover it for 
hydrodynamic times and distances. If we adopt this point of view, we can 
make some considerations to overcome the first problem provided we 
exhibit the existence of well-separated time scales in which the different 
additional variables (or moments of the distribution function) become 
important. The existence of time scales has been taken for granted in 
several calculations using EIT reported in the literature, (l~ yet Table II 
raises severe doubts regarding their validity. 

The conclusion we draw from the 26-moment calculation clarifies the 
real situation, showing that at least for a dilute monatomic gas there are 
no such time scales, so that the times we are interested in are not well 
separated from the nonsteady behavior of the fluxes we have neglected. It 
seems that beyond local equilibrium we cannot make a moment expansion 
based on a hierarchial relaxation for the different variables we would like 
to consider as relevant. This result bears some resemblance with the 
conclusions reached by Van Kampen a few years ago. (~8) Notice should be 
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taken, however, that in some problems the time scales are given in a 
natural way, for example, in a disparate-mass binary mixture we do have 
a hierarchical relaxation and EIT can be applied. (19) Finally, we should 
stress that our results are only valid for dilute monatomic gases, although 
there is no reason to believe that they are also valid for dense monatomic 
gases. 

Let us now consider the results obtained for the generalized entropy 
and its source. It is obvious that the structure of the terms given in 
Eqs. (2.13)-(2.15) is the same as in EIT and the corresponding coefficients 
may be readily identified. The properties of the entropy source can be 
explicitly studied in terms of the collision integrals appearing in the F 
coefficients. To do this, we first write the density of the entropy source 
given in Eq. (2.15) in terms of the collision integrals, namely 

1 / 32m 22 " 1 { 16m (2(2,2)t 
~s = ~ 5  ~ 7 5 ~ f 2 ~ '  ' )  q~  +-~-5 \ 9 ( 3 ~ - ~ T  _ S~kS~k 

24//2 m 2 ~c2 (2' 2) 50(2 '3)  ~'rr 

4 ( ~ T ) ( 7 ~ ( 2 ' 2 ' - 2 0 ( 2 ' 3 ) ) / 5  ( ~ j _ _ _ ~ / S  j )  
7(5) K T  ~ 

+ 49(5)4 K T  2 ff'~ (2, 2) - -  7~c2 (2, 3) -t- ~Q (2,4) ~ - - - - m  

x ( J T : : - - g z l P o ) q - ~ ( 5 ~ ( 2 ' 2 ) )  r m (3.1)  

It is now clear from Eq. (3.1) that the conditions cb s must satisfy to be 
positive definite are therefore given by 

O ~2'21~>0 (3.2) 

( 217 (2(2'2'-5t'2 'e'3) "q-~'-2 (2'4,) ~ 0  (3.3) 
12 

(~21 ~2(2' 2 ) -  7~ (2' 3)--~-O(2' 4 ) )~  0 (3.4) 

~"~ (2' 2) (31-~ ~Q (2'2) - 7,Q(2' 3) -{- ,Q(2'4)) - (7~c2(2' 2) - 2,Q(2'3)) 2 ~ 0 (3.5) 

Conditions (3.2)-(3.5) are readily satisfied for the hard-sphere poten- 
tial, centers of repulsion, and the experimental values for noble gases taken 
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from the literature in the interval of reduced temperatures given by 
1.2 ~< T~< 10.0 and low density. (~6) In fact they can be taken as a probe for 
models of intermolecular potential, since their validity is assured by the 
properties of the collision brackets. (12~ This result also agrees with some 
other calculations (2~ in which the entropy production is obtained without 
a specific form for the single-particle distribution function. 

The positiveness of the entropy production 05 s has been a controversial 
point in the EIT literature. (21'22) In fact, from the phenomenological point 
of view, nothing can be said about this property. Here its calculation on 
the basis of kinetic theory has given us an affirmative answer not only for 
some models, but also for the available experimental values in noble gases. 
Yet this assertion has to be taken with some precaution. In the evaluation 
of Eqs. (2.15) an approximation has been made whereby the logarithm of 
the full distribution function is expanded in powers of fluxes multiplied by 
f itself, and bilinear terms in the fluxes are retained. It is this approximate 
version of q~s that we have shown to be nonnegative, and it is the one 
which in each step is consistent with the EIT calculation. The consequences 
that this has on the form of the equations of motion have been often dis- 
cussed in the literature. ~1'4'23) Nevertheless, conditions (3.2)-(3.5) at least 
clarify that for the monatomic ideal gas ~ ,  is indeed nonnegative. This 
result is, however, not to be interpreted as the consistency of Eq. (1.1) with 
the second law of thermodynamics, since the entropy as exhibited by 
Eq. (2.13) is not the calorimetric entropy not even in its local version. 
Nevertheless, some recent evidence (24) indicates that it may be very well 
related to the information entropy defined by Shannon and extensively 
used by Jaynes' school (25'26) in dealing with nonequilibrium states for 
macroscopic systems. 

As a last remark, it is convenient to point out that the forms we have 
derived for the generalized entropy and its production satisfy the 
requirements that have been imposed on these quantities in a recent 
formulation of a nonequilibrium thermodynamic theory with a continued- 
fraction expansion for the coefficients. (27) The main difference between such 
a theory and our results lies in the fact that all relaxation times for the 
fluxes and their higher derivatives can hardly be claimed to be different, 
since in the language of Jou and Ferrer, (27) the only apparently sensible 
case is that in which r~ = r2 . . . .  rn ~ 0. A detailed discussion of some fine 
points related to this approach to EIT will be published elsewhere. 
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